From “Letter about scientific integrity” by Professor Marno Verbeek to ERIM fellows, members and doctoral students, 04/07/2012 (reference MV/tv 0012.003840), and applied by Stefan Eriksson to Swedish research. It has then been revised continuously by PhD students participating in SE’s course in Research Integrity for Natural Science & Technology at Uppsala University.

General recommendations for handling research data (version 2.0)

1. Raw data: If possible, maintain the original, “raw” research data (including laboratory notebooks, samples, specimens, photographs, scanned papers etc.); or, if not possible, always document them so that the researcher and/or data collecting facility are able to convincingly demonstrate that the original research data has not yet undergone any selection, purification or transformation steps.

2. The data collection process should be clearly described in the research records. This includes equipment, software, simulations made, etc., but also the dates, names and roles of the researchers involved and/or the organizations providing the data (such as research agencies or collaborators). The descriptions should be detailed to the extent that the process can fully be traced back or, in case of simulations, reproduced.

3. Analysis: The data input, analysis procedure and troubleshooting should be documented in detail, so that the analysis or simulation can be replicated exactly. It is good practice to provide any code written especially for the data analysis alongside with its documentation. For each crucial data compilation, purification or transformation step, it is recommended that clearly identifiable and described data sets are stored. (Crucial steps transform data such that it is impossible to revert to the rawer data when only the transformed data is available.)

4. All “raw” data and the documentation of the data collection, input and analysis process should be stored safely, electronic data on a central server with backup or in duplicate to prevent accidental deletion. No original data should be removed from the research body without explicit permission from authorized officials.

5. Data that are e.g. sensitive or protected by secrecy should be securely handled (by measures such as ‘pseudonymization’, logging access, encryption or password protection).

6. Data should be preserved according to national regulations on archiving, and, if possible, kept in a standardized format that facilitates the aggregation and re-use of data. For examples, see https://www.loc.gov/preservation/resources/rfs/TOC.html

7. To ensure the possibility of public access to the data; order and list data as well as the accompanying research records in such a way that a layperson can understand what is archived.

8. Open data: It is good practice and a mark of excellence to register or publish data sets in open repositories (such as Dryad, GDC or dbGap) with or after the reporting of results.

9. Original data and research records should only ever be deleted for justified reasons and after results have been made public, and reasonable time has passed for verification of research results (often at least 10 years after publication is believed to be reasonable).

10. It is also good practice to use resolvable and persistent identifiers such as e.g. digital object identifiers (DOIs) to distinguish the data and to use them in citations or on a CV, for example (www.doi.org).